[1]朱华刚.河口海岸带硅的生物地球化学研究进展[J].江苏水利,2017,(10):32-36.
ZHU Huagang.Advances in bio-geochemistry of silicon in estuary and coastal zones[J].JIANGSU WATER RESOURCES,2017,(10):32-36.
点击复制
河口海岸带硅的生物地球化学研究进展(
)
《江苏水利》[ISSN:1006-6977/CN:61-1281/TN]
- 卷:
-
- 期数:
-
2017年10期
- 页码:
-
32-36
- 栏目:
-
生态与环境
- 出版日期:
-
2017-10-19
文章信息/Info
- Title:
-
Advances in bio-geochemistry of silicon in estuary and coastal zones
- 文章编号:
-
1007-7839(2017)10-0032-05
- 作者:
-
朱华刚
-
九江市水利电力规划设计院,江西 九江 332000
- Author(s):
-
ZHU Huagang
-
Jiujiang Design Institute of Water Conservancy and Hydro-electric Power,Jiujiang 332000,Jiangxi
-
- 关键词:
-
河口海岸带; 硅; 生物地球化学; 硅循环
- Keywords:
-
estuary and coastal zones; silicon; bio-geochemistry; silicon cycl ing
- 分类号:
-
P593
- 文献标志码:
-
B
- 摘要:
-
硅(Si)作为地壳中的第二大元素,是全球碳循环和陆—海相互作用过程中的关键元素之一。河口海岸带作为沟通陆地与海洋的关键区域,其间的硅循环过程受到了广泛的关注。对于河口而言,尤其是具有最大悬浊带的大潮河口,受沉降—再悬浮、生物硅(biogenic silica,BSi)的生消过程及悬浮物与水体之间发生的长期输运分离等因素的影响,硅的迁移转化过程可能极其复杂。因此,研究河口海岸带硅循环过程要综合考虑多因素耦合作用的影响。
- Abstract:
-
Silicon (Si), as the second largest element in the crust, is one of the key elements in the global carbon cycle and land sea interaction. The estuary and coastal zones are key areas for communication between land and sea, during which the silicon cycling process has received extensive attention. For the estuaries, especially the tide estuary with the largest suspension zone, the migration process of silicon might be extremely complex due to factors such as sedimentation - resuspension, biogenic silica (BSi) and the long-term transport separation between suspended matter and water. Therefore, it’s necessary to comprehensively consider the effects of multi-factor coupling in the study of the silicon cycling process in estuary and coastal zones.
参考文献/References:
[1] Laruelle G G,Roubeix V,Sferratore A,et al.Anthropogenic perturbations of the silicon cycle at the global scale:Key role of the land-ocean transition[J].Global Biogeochemical Cycles,2009,23(4):B4031.
[2] Tréguer P J,De La Rocha C L.The World Ocean Silica Cycle[J].Annual Review of Marine Science,vol 5,2013,5:477-501.
[3] Van Cappellen P,Dixit S,van Beusekom J.Biogenic silica dissolution in the oceans:Reconciling experimental and field-based dissolution rates[J].Global Biogeochemical Cycles,2002,16(4):21-23.
[4] Rapp Jr G,Mulholland S C.Phytolith systematics:Emerging issues[M].Springer Science & Business Media,1992.
[5] Riley J P,Chester R.Chemical Oceanography[M].2 ed.London:Academic Press,1978.
[6] Clark J F,Simpson H J,Bopp R F,et al.Geochemistry and loading history of phosphate and silicate in the hudson estuary[J].Estuarine Coastal and Shelf Science,1992,34(3):213-233.
[7] Sharp J H,Church T M.The chemistry of the delaware estuary.general considerations[J].Limnology and Oceanography,1982,27(6):1015-1028.
[8] Loucaides S,Koning E,Van Cappellen P V.Effect of pressure on silica solubility of diatom frustules in the oceans:results from long-term laboratory and field incubations[J].M arine Chemistry,2012,136-137(2):1-6.
[9] Struyf E,Dausse A,Van D S,et al.Tidal marshes and biogenic silica recycling at the land–seainterface[J].Limnology and Oceanography,2006,51(2).
[10] Struyf E,Van Damme S,Gribsholt B,et al.Phragmitesaustralis and silica cycling in tidal wetlands[J].Aquatic Botany,2007,87(2):134-140.
[11] Zhu Z Y,Ng W M,Liu S M,et al.Estuarine phytoplankton dynamics and shift of limiting factors:a study in the changjiang (yangtze river)estuary and adjacent area[J].Estuarine Coastal and Shelf Science,2009,84(3):393-401.
[12] Shen Z,Z hou S,Pei S.Tra nsfer a nd t ra nspor t of phosphorus and silica in the turbidity maximum zone of the Changjiang estuary[J].Estuarine,Coastal and Shelf Science,2008,78(3):481-492.
[13] Carbonnel V,Vanderborght J,Lionard M,et al.Diatoms,silicic acid and biogenic silica dynamics along the salinity gradient of the Scheldt estuary(Belgium/The Netherlands)[J].Biogeochemistry,2013,113(1-3):657-682.
[14] Asmus R M,Sprung M,Asmus H.Nutrient f luxes in intertidal communities of a south european lagoon(Ria Formosa)- similarities and differences with a northern wadden sea bay(Sylt-Romo bay)[J].Hydrobiologia,2000,436(1-3):217-235.
[15] Dugdale R C,Wilkerson F P.Understanding the eastern equatorial Pacific as a continuous new production system regulating on silicate[J].Nature,1998,391:270-273.
[16] Nelson D M,Dortch Q.Silicic acid depletion and silicon limitation in the plume of the Mississippi River:evidence from kinetic studies in spring and summer[J].Marine Ecology Progress Series,1996,136:163-178.
[17] Ragueneau O,Quéguiner B,Tréguer P.Contrast in biological responses to tidally-induced vertical mixing for two macrotidal ecosystems of Western Europe[J].Estuarine,Coastal and Shelf Science,1996,42(5):645-665.
[18] Ragueneaul O,Varelaz E D B,Tréguerl P,et al.Phytoplankton dynamics in relation to the biogeochemical cycle of silicon in a coastal[J].Marine Ecology Progress Series,1994,106:157-172.
[19] Rojas De Mendiola B.Seasonal phytoplankton distribution along the Peruvian coast[A].Richards F A.Coastal Upwelling[M].Washington:American Geophysical Union,1981.330-347.
[20] Legendre L,Le Fèvre J.Hydrodynamical singularities as controls of recycled versus export production in oceans[A].Berger W H,Smetacek V S,Wefer G.Productivity of the ocean:present and past[M].Wiley,1989.
[21] Margalef R.Life-forms of phytoplankton as survivalalternatives in an unstable environment [J].Oceanologicaacta,1978,4(1):493-509.
[22] Chisholm S W.Phytoplankton size[A].Falkowski P G,Woodhead A D.Primary Productivity and Biogeochemical Cycles in the Sea[M].New York:Plenum,1992.213-238.
备注/Memo
- 备注/Memo:
-
收稿日期:2017-06-26
作者简介:朱华刚(1986-),男,博士,研究方向为水资源保护与生态修复。
更新日期/Last Update:
2017-10-15