[1]董兆华,俞凯,黄先北,等.贯流泵站前池表面涡数值预测与分析[J].江苏水利,2024,(11):8-11.
 DONG Zhaohua,YU Kai,HUANG Xianbei,et al.Numerical prediction and analysis of surface vortex of the forebay in tubular pumping station[J].JIANGSU WATER RESOURCES,2024,(11):8-11.
点击复制

贯流泵站前池表面涡数值预测与分析()
分享到:

《江苏水利》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年11期
页码:
8-11
栏目:
水利规划与设计
出版日期:
2024-11-15

文章信息/Info

Title:
Numerical prediction and analysis of surface vortex of the forebay in tubular pumping station
文章编号:
1007-7839(2024)11-0008-0004
作者:
董兆华1俞凯2黄先北2仇宝云2孟小敏1
(1. 江苏省灌溉总渠管理处,江苏 淮安 223200;2. 扬州大学 电气与能源动力工程学院,江苏 扬州 225127)
Author(s):
DONG Zhaohua1 YU Kai2 HUANG Xianbei2 QIU Baoyun2 MENG Xiaomin1
(1. General Irrigation Canal Management Office of Jiangsu Province, Huai’an 223200, China;2. College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China)
关键词:
贯流泵站表面涡计算流体动力学
Keywords:
tubular pumping station surface vortex CFD
分类号:
TV675
文献标志码:
B
摘要:
贯流泵站因其流道水力损失小,装置效率高的优点在灌溉、调水和排水等领域应用广泛,受水位、工况等影响,泵站前池常出现表面漩涡等不良现象,影响泵站效率及稳定性。以淮安三站灯泡式贯流泵站为研究对象,通过计算流体动力学数值模拟了泵站进水流道和前池,采用BM模型捕捉表面涡的旋转特性,采用S-CLSVOF跟踪自由表面,研究了设计工况下贯流泵站的内部的流动规律和表面涡的发展,结果表明:淹没深度越大,表面涡越弱,但水面的波动更强;表面涡的出现将使进水流道流速均匀性降低。研究结果为大中型贯流泵站吸气涡的数值模拟提供理论参考。
Abstract:
Tubular pumping station is widely used in fields such as irrigation, water regulation and drainage due to its advantages of small hydraulic loss in the flow path and high device efficiency. Affected by water level and working conditions, surface vortex and other undesirable phenomena often appear in the forebay of pumping station, which affects the efficiency and stability of pumping station. The Huai’an three bulb tubular pumping station is taken as the research object, and the inlet channel and forebay of the pump station are simulated by CFD. The BM model is used to capture the rotation characteristics of the surface vortex, and S-CLSVOF is used to track the free surface. The internal flow law of the tubular pumping station under the design condition are studied. The results show that the greater the submergence depth, the weaker the surface vortex, but the fluctuation of the water surface is stronger; The appearance of surface vortices will reduce the uniformity of flow velocity in the inlet water channel. The research results provide theoretical reference for the numerical simulation of suction vortex in large and medium-sized tubular pumping stations.

参考文献/References:

[1]肖若富,李宁宁. 进水池形状对吸入涡影响试验研究[J]. 排灌机械工程学报,2016,34(11):953-958.
[2]吴鹏飞. 进水池表面吸气涡动态过程及机理研究[D]. 武汉:武汉大学,2018.
[3]张德胜,李普熙,赵睿杰,等. 泵站进水池吸入口涡旋结构及湍流特性的大涡模拟[J]. 农业机械学报,2019,50(10):134-141.
[4]GUO Q,HUANG X B,et al. The formation of the steady and unsteady air-entrained vortices in pump sump[J]. International Journal of Multiphase Flow,2020,129:103312.
[5]HUANG X B,GUO Q,et al. Air-entrainment in hydraulic intakes with a vertical pipe:the mechanism and influenceof pipe offset[J]. International Journal of Multiphase Flow,2022,146:103866.
[6]资丹. 泵站进水池吸气涡水力特性研究[D]. 北京:中国农业大学,2019.
[7]潘强,施卫东,赵瑞杰,等. 基于LES的泵站前池表面涡及液下涡流瞬态特性分析[J]. 农业机械学报,2018,49(5):186-194.
[8]PARK Y K,DEY M K,CHOI Y H,et al. Numerical visualization of air intake induced by free surface vortex[J]. Journal of Thermal Science,2017,26(6):540-544.
[9]PETTERSSON REIF,B A,DURBIN P A,OOI A. Modeling rotational effects in eddy-viscosity closures[J]. Int. J. Heat Fluid Flow,1999,20(6):563-573.
[10]YAMAMOTO T,OKANO Y,DOST S. Validation of the S-CLSVOF method with the density-scaled balanced continuum surface force model in multiphase systems coupled with thermocapillary flows[J]. International Journal of Numerical Methods in Fluids,2017,83:223-244.

相似文献/References:

[1]边晓阳,赵凯,张继来.基于重力原理的油水分离盒子在贯流泵站的应用探讨[J].江苏水利,2024,(11):69.
 BIAN Xiaoyang,ZHAO Kai,ZHANG Jilai.Discussion on the application of oil-water separation box based on gravity principle in cross-flow pumping station[J].JIANGSU WATER RESOURCES,2024,(11):69.

备注/Memo

备注/Memo:
收稿日期:2024-07-19
基金项目:国家自然科学基金(52379093、52179091);江苏省水利科技项目(2022016)
作者简介:董兆华(1972—),男,高级工程师,硕士,主要从事水利工程管理工作。E-mail: 1024625914@qq.com
通信作者:黄先北(1991—),男,副教授,博士,主要从事泵站工程、水力机械内流机理研究工作。E-mail: znhuang@163.com
更新日期/Last Update: 2024-11-15