[1]钟惠钰,陈棨尧.基于多边际条件下的水位流量预测模型在防洪和水资源调配中的应用[J].江苏水利,2025,(03):7-11.
 ZHONG Huiyu,CHEN Qiyao.Application of stage discharge prediction model based on multi marginal conditions in flood control and water resources dispatching[J].JIANGSU WATER RESOURCES,2025,(03):7-11.
点击复制

基于多边际条件下的水位流量预测模型在防洪和水资源调配中的应用()
分享到:

《江苏水利》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年03期
页码:
7-11
栏目:
水文水资源
出版日期:
2025-03-15

文章信息/Info

Title:
Application of stage discharge prediction model based on multi marginal conditions in flood control and water resources dispatching
文章编号:
1007-7839(2025)03-0007-0005
作者:
钟惠钰陈棨尧
(太湖流域管理局苏州管理局,江苏 苏州 215000)
Author(s):
ZHONG Huiyu CHEN Qiyao
(Taihu Basin Authority of Ministry of Water Resouces Suzhou Administration, Suzhou 215000, China)
关键词:
数字孪生机器学习水位流量预测防洪水资源调度高质量发展
Keywords:
digital twin machine learning stage discharge prediction flood control water resources dispatching
分类号:
TV21
文献标志码:
B
摘要:
为支撑数字孪生太浦闸先行先试建设任务,构建数字孪生水利工程“四预”闭环链条,研究上线了基于机器学习的数字孪生太浦闸多维动态水位流量预测模型,解决了工程调度运行与安全运行的相关业务难题。该模型基于对原有BP神经网络预测模型优化改进,耦合太湖流域水质水量模型,对上下游水位预报成果进行反演推算,实现预测工程未来24h泄流能力,为流域防洪和水资源调度提供决策参考。通过优化影响因子权重,调整训练样本,闸门精准控制率提高10%以上,调度执行精准率达到100%,在倒流“四预”上取得突破,极大地保障了工程安全运行。在2022年防御台风和向下游地区压咸保供工作中应用成效显著。
Abstract:
In order to support the pilot construction task of digital twin Taipu gate and to build the "four forecast" closed-loop chain of digital twin water conservancy project, the multi-dimensional dynamic stage discharge prediction model of digital twin Taipu gate based on machine learning has been developed and launched, which has resolved relevant operational challenges in project scheduling and safe operation. The model is based on the optimization and improvement of the original BP neural network prediction model, coupling the water quality and quantity model of Taihu Basin, and reversing the upstream and downstream water level forecast results, so as to predict the discharge capacity of the project in the next 24 hours, and provide reference for decision-making for flood control and water resources dispatching in the basin. By optimizing the weight of the influence factor and adjusting the training sample, the precision control rate of the gate increased by more than 10%, and the precision rate of scheduling execution reached 100%, a breakthrough was made in the “four forecasts” of reverse flow, which greatly guaranteed the safe operation of the project. In 2022, the application of typhoon defense and the work of pressing salt and supply to downstream areas has achieved remarkable results.

参考文献/References:

[1]国家发展改革委,自然资源部,生态环境部,住房城乡建设部,水利部,农业农村部. 太湖流域水环境综合治理总体方案[Z]. 北京:国家发展改革委,2022.
[2]李国英. 为以中国式现代化全面推进强国建设、民族复兴伟业提供有力的水安全保障[J]. 水利发展研究,2024,24(3):1-3.
[3]袁林山,张力. 基于BP神经网络模型的黄龙滩电厂下游水位流量关系分析[J]. 水电与新能源,2020,34(1):7-11.
[4]赵力学. 基于混合BP神经网络的河流水位流量预测方法研究[D]. 武汉:武汉理工大学,2019.
[5]郭世圆,马为之,卢瑞麟,等. 基于LSTM神经网络的复杂工况下明渠流量预测[J]. 清华大学学报(自然科学版),2023,63(12):1924-1934.
[6]李宛东. 节制闸过闸流量规律的研究与应用[D]. 郑州:华北水利水电大学,2018.
[7]梁金昶. 数据与人工智能双重驱动的节制闸流量预测方法研究[D]. 郑州:华北水利水电大学,2023.
[8]YAN X,WANG Y,FAN B,et al. Data-driven modeling ofsluice gate flows using a convolutional neural network[J]. Journal of Hydroinformatics, 2023, 25(5): 1629-1647.
[9]太湖流域管理局. 太湖流域综合规划(2012—2030)简要文本[A]. 上海:太湖流域管理局,2017:9-13.
[10]太湖流域管理局苏州管理局. 苏州管理局工程管理手册[A]. 上海:太湖流域管理局,2020:4-01.
[11]范世香. 工程水文与水利计算[M]. 北京:中国水利水电出版社,2013.
[12]高玮志,高华勇,王兆礼,等. 基于机器学习的太湖流域多层次防洪调度方案综合评价[J]. 水资源保护,2023,39(3):118-125.
[13]孙娅楠,林文斌. 梯度下降法在机器学习中的应用[J]. 苏州科技大学学报(自然科学版),2018,35(2):26-31.

相似文献/References:

[1]陈占才,卢中华,朱孟东.数字孪生技术在连云港市“清水进城”中的应用[J].江苏水利,2022,(06):69.
 CHEN Zhancai,LU Zhonghua,ZhU Mengdong.Application of digital twin technology in the action of“clean water into the city”in Lianyungang[J].JIANGSU WATER RESOURCES,2022,(03):69.
[2]方桂林.真抓实干 智能赋能 奋力谱写江苏智慧水利建设新篇章[J].江苏水利,2022,(增刊1):24.
 FANG Guilin.Writing a new chapter of Jiangsu smart water conservancy construction with practical efforts and intelligence enabling[J].JIANGSU WATER RESOURCES,2022,(03):24.
[3]刘飞诗,胡腾腾*,何晓静,等.基于人工智能的农田水利自动化监测系统[J].江苏水利,2022,(11):46.
 LIU Feishi,HU Tengteng,HE Xiaojing,et al.Research on automatic monitoring system of farmland water conservancy based on artificial intelligence[J].JIANGSU WATER RESOURCES,2022,(03):46.
[4]华烨,常露.锡澄地区水工程预报调度一体化系统的研究与设计[J].江苏水利,2022,(增刊2):22.
 HUA Ye,CHANG Lu.Research and design of integrated forecasting and dispatching system for water engineering in Wuxi-Jiangyin Area[J].JIANGSU WATER RESOURCES,2022,(03):22.
[5]佟保根,黄屿璁,梁礼永.徐州市铜山区数字孪生城区防洪指挥平台建设[J].江苏水利,2022,(增刊2):32.
 TONG Baogen,HUANG Yucong,LIANG Liyong.Construction of digital twin urban flood control command platform in Tongshan District, Xuzhou City[J].JIANGSU WATER RESOURCES,2022,(03):32.
[6]牟昀丽,梁永荣,吴凯.面向智慧水利的县域水资源监管集成平台设计[J].江苏水利,2022,(增刊2):52.
 MOU Yunli,LIANG Yongrong,WU Kai.Design of county water conservation and standardize water resources management integration platform for smart water conservancy:a case study of Binhu district in Wuxi[J].JIANGSU WATER RESOURCES,2022,(03):52.
[7]邱旭东,单瑾,戴天齐.数字孪生南通城区水网建设探讨[J].江苏水利,2022,(增刊2):65.
 QIU Xudong,SHAN Jin,DAI Tianqi.Discussion on construction of digital twin water network in Nantong City[J].JIANGSU WATER RESOURCES,2022,(03):65.
[8]王岩,刘斌,徐立建,等.数字孪生技术与智慧水利枢纽建设思考[J].江苏水利,2022,(增刊2):76.
 WANG Yan,LIU Bin,XU Lijian,et al.Thoughts on digital twin technology and construction of smart water conservancy projects[J].JIANGSU WATER RESOURCES,2022,(03):76.
[9]宋亚威,黄一昀,徐伟,等.基于数字孪生的海安市智慧水网“一张图”关键技术研究[J].江苏水利,2023,(06):40.
 SONG Yawei,HUANG Yiyun,XU Wei,et al.Research on the key technologies of“one map”of Hai’an smart water network based on digital twin[J].JIANGSU WATER RESOURCES,2023,(03):40.
[10]包振东,刘建龙,胡锦,等.数字孪生技术在泵站工程中的应用[J].江苏水利,2023,(07):28.
 BAO Zhendong,LIU Jianlong,HU Jin,et al.Research on the application of digital twin technology in pumping station engineering[J].JIANGSU WATER RESOURCES,2023,(03):28.

备注/Memo

备注/Memo:
收稿日期:2024-09-27
作者简介:钟惠钰(1980—),男,高级工程师,硕士,主要研究方向为智慧水利。E-mail: 38402508@qq.com
更新日期/Last Update: 2025-03-15