[1]郭燕飞,高 强,李 轶*.混凝土负载C,N-TiO2 对有机磷杀虫剂的吸附和降解性能研究[J].江苏水利,2018,(02):41-48.
 GUO Yanfei,GAO Qiang,LI Yi*.Study on adsorption and degradation of organophosphorus pesticides by C and N-TiO2 supported on concrete[J].JIANGSU WATER RESOURCES,2018,(02):41-48.
点击复制

混凝土负载C,N-TiO2 对有机磷杀虫剂的吸附和降解性能研究()
分享到:

《江苏水利》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年02期
页码:
41-48
栏目:
生态与环境
出版日期:
2018-03-10

文章信息/Info

Title:
Study on adsorption and degradation of organophosphorus pesticides by C and N-TiO2 supported on concrete
文章编号:
1007-7839(2018)02-0041-08
作者:
郭燕飞高 强李 轶*
河海大学环境学院浅水湖泊综合治理与资源开发教育部重点实验室,江苏 南京 210098
Author(s):
GUO YanfeiGAO QiangLI Yi*
Key Laboratory of Integrated Management and Resource Exploitation of Shallow Lakes,Ministry of Education,School of Environmental Science,Hohai University,Nanjing 210098,Jiangsu
关键词:
面源污染混凝土吸附可见光催化降解敌百虫抗压强度抗渗性能
Keywords:
non-point source pollutionconcreteadsorptionvisible light catalytic degradation trichlorfoncompressive strengthimpermeability
分类号:
X53
文献标志码:
B
摘要:
本文制备了一种负载碳、氮共掺杂二氧化钛(C,N-TiO2)的混凝土(C,N-TiO2/Ct),研究了光催化剂负载量和固化时间对其吸附、降解敌百虫的影响,测试了混凝土的抗压强度和抗渗性能。结果表明,与普通混凝土(Ct)和TiO2/ 混凝土(TiO2/Ct)相比,C,N-Ti O2/Ct 对敌百虫有较高的降解效率,并随着C,N-TiO2 的增加而逐渐提高,但其吸附效率却相对较低。混凝土对敌百虫的降解和吸附效率随固化时间的增加而降低,固化3 d 的5%C,N-TiO2/Ct 吸附率比Ct 低8.8%,但对敌百虫的降解率比Ct 高15.4%。此外,混凝土的抗压强度随催化剂含量和固化时间的增加而提高,固化28 d 的5% C,N-TiO2/Ct 的抗压强度与Ct 相比提高了24.8%。混凝土的抗渗性能随着C,N-TiO2 含量的增加呈先升高后降低的趋势,其中2.5% C,N-TiO2/Ct 抗渗性能最高,比Ct 增加了36.2%。因此,光催化混凝土具有控制河流面源污染的应用潜力。
Abstract:
A kind of concrete (C, N-TiO2/Ct) loaded with carbon and nitrogen co-doped titanium dioxide (C, N-TiO2) was prepared. The effects of photocatalyst loading and curing time on the adsorption and degradation of trichlorfon were studied, and the compressive strength and impermeability of concrete were tested. The results showed that compared with ordinary concrete (Ct) and TiO2/ (TiO2/Ct), C concrete, N-TiO2/Ct had higher degradation efficiency on trichlorfon and gradually increased with the increase of C and N-TiO2, but its adsorption efficiency was relatively low. Concrete degradation and adsorption efficiency of trichlorfon decreased with increasing curing time, and the adsorption rate of 5% C, N-TiO2/Ct curing 3 days was 8.8% lower than Ct, but the rate of degradation of trichlorfon was 15.4% higher than Ct. In addition, the compressive strength of concrete increases with the increase of catalyst content and curing time, and the compressive strength of 5% C,N-TiO2/Ct increased by 24.8% compared with Ct after curing 28 days. The impermeability of concrete increased first and then decreased with the increase of C, N-TiO2 content, among which 2.5% C,N-TiO2/Ct had the highest impermeability, which was 36.2% higher than Ct. Therefore, photocatalytic concrete had the potential to control the non-point source pollution of rivers.

参考文献/References:

[1] Bao Y,Zhang C,Yang W,et al. Mechanism and kinetics study on the OH-initiated oxidation of organophosphorus pesticide trichlorfon in atmosphere[J].Science of the Total Environment,2012,419: 144-150 .
[2] Liu W,Chen S,Zhao W,et al.Study on the photocatalytic degradation of trichlorfon in suspension of titanium dioxide[J] .Desalination,2009,249(3): 1288-1293 .
[3] Baylis A D. Why glyphosate is a global herbicide: strengths,weaknesses and prospects[J].Pest Management Science,2000,56(4): 299-308 .
[4] Feldmeier H,Chitsulo L. Therapeutic and operational profiles of metrifonate and praziquantel in Schistosoma haematobium infection[J].Arzneim-forsch,1999,49(07):557-565 .
[5] Jiang W,Gan J,Haver D. Sorption and desorption of pyrethroid insecticide permethrin on concrete[J] .Environmental science & technology,2010,45(2): 602-607 .
[6] Hoffmann M R,Martin S T,Choi W,et al. Environmental applications of semiconductor photocata lysis[J] .Chemical reviews,1995,95(1): 69-96 .
[7] Chen,Xiaobo,Samuel S.Mao .Titanium dioxide nanomaterials: synthesis,properties,modifications,and applications[J].Chem. Rev,2007 107(7): 2891-2959 .
[8] Folli A,Pade C,Hansen T B,et al. TiO2 photocatalysis in cementitious systems: insights into self-cleaning and depollution chemistry[J].Cement and concrete research,2012,42(3): 539-548 .
[9] Ramirez,Anibal Maury,et al.Titanium dioxide coated cementitious mater ia ls for air pur ifying pur poses: prepa ration,cha racter ization a nd toluene removal potential[J].Building and Environment,2010,45(4):832-838 .
[10] Chen,Meng,Jia ng-Wei Chu. NOx photocatalytic degradation on active concrete road surface from experiment to real-scale application[J].Journal of Cleaner Production,2011,19(11): 1266-1272 .
[11] Trevisan V,Olivo A,Pinna F,et al.CN/TiO2 photocatalysts: effect of co-doping on the catalytic performance under visible light [J].Applied Catalysis B:Environmental,2014,160: 152-160 .
[12] Zhang K,Wang X,He T,et al. Preparation and photocatalytic activity of B–N co-doped mesoporous TiO2 [J].Powder Technology,2014,253: 608-613 .
[13] Wang W,Ni Y,Lu C,et al. Hydrogenation temperature related inner structures and visible-light- driven photocatalysis of N–F co-doped TiO2 nanosheets[J] .Applied Surface Science,2014,290: 125-130 .
[14] Chen J,Zhong J,Li J,et al. Photoinduced charge separation and simulated solar-driven photocatalytic performance of C–N-co-doped TiO2 prepared by sol–gel method[J].Journal of Sol-Gel Science and Technology,2015,76(2): 332-340 .
[15] Shao Y,Cao C,Chen S,et al. Investigation of nitrogen doped and carbon species decorated TiO2 with enhanced visible light photocatalytic activity by using chitosan [J] .Applied Catalysis B: Environmental,2015,179: 344-351 .
[16] Ramamurthy K,Nambiar E K K,Ranjani G I S. A classification of studies on properties of foam concrete [J].Cement and Concrete Composites,2009,31(6): 388-396 .
[17] Chen J,Poon C. Photocatalytic cementitious materials:inf luence of the microstr ucture of cement paste on photocatalytic pollution degradation [J].Environmental science & technology,2009,43(23): 8948-8952 .

相似文献/References:

[1]杨卫星,汤仲仁.南通市九圩港提水泵站工程裂缝处理施工工艺[J].江苏水利,2017,(04):18.
 YANG Weixing,TANG Zhongren.The construction process of concrete crack treatment in Jiuweigang pump station[J].JIANGSU WATER RESOURCES,2017,(02):18.
[2]沈义勤.人民胜利堰节制闸除险加固工程混凝土防碳化处理方案的选择[J].江苏水利,2018,(02):25.
 SHEN Yiqin.Selection of the concrete anti carbonization treatment scheme for the reinforcement project of the people's victory weir sluice[J].JIANGSU WATER RESOURCES,2018,(02):25.
[3]王予匀.浅谈省属水利工程维修养护项目中混凝土工程的外观控制[J].江苏水利,2019,(02):67.
 WANG Yuyun.Discussion on appearance control of concrete engineering in maintenance and repair project of provincial water conservancy project[J].JIANGSU WATER RESOURCES,2019,(02):67.
[4]何湖滨.南京市梅龙湖汇水区入湖污染负荷估算及对策研究[J].江苏水利,2019,(03):30.
 HE Hubin.Estimation and countermeasure research on pollution load in the catchment area of Meilong Lake in Nanjing City[J].JIANGSU WATER RESOURCES,2019,(02):30.
[5]刘兆正,张合朋,吉庆伟,等.冻融环境下水工混凝土结构碳化时变可靠度分析[J].江苏水利,2021,(06):17.
 LIU Zhaozheng,ZHANG Hepeng,JI Qingwei,et al.Time-varying reliability analysis of carbonation of hydraulic concrete structures under freeze-thaw conditions[J].JIANGSU WATER RESOURCES,2021,(02):17.
[6]张 明.对某送水渠完建期混凝土护坡衬砌出现上浮的原因剖析[J].江苏水利,2021,(06):23.
 ZHANG Ming.Causes analysis on concrete slope lining floating in completion period of a water supply channel[J].JIANGSU WATER RESOURCES,2021,(02):23.
[7]宋 波,徐正飞,李 军,等.黄窝水库保护利用对策研究[J].江苏水利,2021,(增刊1):41.
 SONG Bo,XU Zhengfei,LI Jun,et al.Study on protection and utilization countermeasures of Huangwo Reservoir[J].JIANGSU WATER RESOURCES,2021,(02):41.
[8]谷静,王霄,陈超,等.渠道护坡混凝土物化损伤作用下力学特性[J].江苏水利,2022,(07):21.
 GU Jing,WANG Xiao,CHEN Chao,et al.Mechanical properties of canal slope protection concrete under physicochemical damage[J].JIANGSU WATER RESOURCES,2022,(02):21.
[9]龚志明,王鹏,周晓锋*.光磁耦合式自愈合混凝土的制备与研究[J].江苏水利,2022,(11):1.
 GONG Zhiming,WANG Peng,ZHOU Xiaofeng*.Preparation and study of optomagnetically coupled self-healing concrete[J].JIANGSU WATER RESOURCES,2022,(02):1.

备注/Memo

备注/Memo:
收稿日期:2017-09-30
基金项目:江苏省水利科技项目(2016016);国家自然科学基金(51779076)
作者简介:郭燕飞(1993-),男,硕士研究生,主要从事水污染控制和水资源保护研究。
通讯作者:李轶(1975-),男,教授,博士研究生,主要从事污水处理与资源化、水环境治理与修复、水资源保护研究。
更新日期/Last Update: 2018-02-15