[1]季俊杰,徐瑶瑶,闻昕,等.基于BP神经网络和三次样条插值法的感潮河段水位预报[J].江苏水利,2024,(07):33-37,46.
 JI Junjie,XU Yaoyao,WEN Xin,et al.Water level forecast of tidal river sections based on the BP neural network and cubic spline interpolation method[J].JIANGSU WATER RESOURCES,2024,(07):33-37,46.
点击复制

基于BP神经网络和三次样条插值法的感潮河段水位预报()
分享到:

《江苏水利》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年07期
页码:
33-37,46
栏目:
水文水资源
出版日期:
2024-07-15

文章信息/Info

Title:
Water level forecast of tidal river sections based on the BP neural network and cubic spline interpolation method
文章编号:
1007-7839(2024)07-0033-0005
作者:
季俊杰1徐瑶瑶2闻昕3纪凯文3马晶洁3
(1. 江苏省河道管理局,江苏 南京 210029;2. 江苏省太湖地区水利工程管理处,江苏 苏州 215100;3. 河海大学 水利水电学院,江苏 南京 210098)
Author(s):
JI Junjie1 XU Yaoyao2 WEN Xin3 JI Kaiwen3 MA Jingjie3
(1. Jiangsu River Course Administration Bureau, Nanjing 210029, China;2. Water Conservancy Engineering Management Office of Taihu Region of Jiangsu Province, Suzhou 215100, China;3. College of water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China)
关键词:
感潮河段水位预报水利枢纽
Keywords:
tidal river section water level forecast water conservancy hub
分类号:
[TV123]
文献标志码:
B
摘要:
针对常熟水利枢纽外江侧为感潮河段,提出一种基于BP神经网络和三次样条插值结合的感潮河段水位预报方法。结果表明,潮位预报预见期为1 d与2 d时,模型绝对误差分别为0.06 m与0.18 m,合格率分别为87.5%与70.9%,满足《水文情报预报规范》所规定的发布正式预报要求;预见期为3 d时,模型绝对误差与合格率分别为0.28 m与61.4%,满足参考性预报要求。水位预报预见期为1 d时,模型绝对误差为0.07 m,适用于枢纽的精细化调度;预见期为2 d与3 d时,模型绝对误差分别为0.13 m和0.18 m,可为枢纽运行提供精准的外江侧水位预报。
Abstract:
A water level prediction method for tidal river sections on the outer river side of Changshu Water Conservancy Hub is proposed based on a combination of BP neural network and cubic spline interpolation. The results show that when the forecast period for tidal level forecast is 1 day and 2 days, the absolute errors of the model are 0.06 m and 0.18 m, respectively, and the qualification rates are 87.5% and 70.9%, meeting the requirements for issuing formal forecasts as stipulated in the “Hydrological Information Forecasting Specification”; When the forecast period is 3 days, the absolute error and qualification rate of the model are 0.28 m and 61.4%, respectively, meeting the reference forecast requirements. When the forecast period for water level is 1 day, the absolute error of the model is 0.07 m, which is suitable for the refined scheduling of the hub; When the forecast period is 2 days and 3 days, the absolute errors of the model are 0.13 m and 0.18 m, respectively, which can provide water level information reference for the operation of the hub.

参考文献/References:

[1]都宏博. 感潮河段水位统计预报方法研究[D]. 南京:河海大学,2007.
[2]张小琴,包为民. 感潮河段水位预报方法浅析[J]. 水电能源科学,2009,27(3):8-10.
[3]邱超,潘爽. 浦阳江流域感潮河段洪水预报研究[J]. 水文,2024,29(3):1-13.
[4]韩超,梅青,刘曙光,等. 平原感潮河网水文水动力耦合模型的研究与应用[J]. 水动力学研究与进展,2014,29(6):706-712.
[5]闫龙增,冉钦朋,贺苹,等. 三峡水库蓄水初期寸滩站洪水预报方法研究[J]. 水文,2023,43(1):72-77.
[6]谢文鸿. 基于机器学习的风暴潮智能预报[D]. 南京:南京信息工程大学,2024.
[7]刘倩. 基于调和分析与神经网络的潮汐分析和预报[D]. 青岛:青岛大学,2023.
[8]徐晓武,陈永平,甘敏,等. 基于非稳态调和分析和长短时记忆神经网络的河口潮位短期预报混合模型[J]. 海洋通报,2022,41(4):401-410.
[9]汪昊燃,王容,黄鹏年,等. 水文水力学结合的秦淮河流域洪水模拟与实时校正[J]. 河海大学学报(自然科学版),2023,51(3):25-30.
[10]白立影,戴凤君,谭亚,等. 镇江站天文潮预报模型研究[J]. 江苏水利,2017(10):40-43.
[11]周莉,严锋,何健,等. 基于多元逐步回归及实时修正的长江南京站高潮位预报[J]. 水利水电快报,2023,44(3):22-25.
[12]史凯丰. 丹东潮水位站高低潮位预报的修正与应用[J].东北水利水电,2023,41(8):25-26.
[13]陈志高,吴子豪,班亚,等. 基于调和分析及VMD-BP神经网络的感潮河段流量预报[J]. 武汉大学学报(信息科学版),2023,48(8):1389-1397.
[14]陈柯兵,邓良爱,李瀛,等. 基于AutoML的长江下游周旬尺度枯水位及潮位预报[J]. 水运工程,2023(11):120-125.
[15]衣学军,汤岭,李致家,等. 基于机器学习的洪水预报实时校正[J]. 水电能源科学,2023,41(12):78-81.
[16]葛路,张善亮,许月萍,等. 耦合BP神经网络的MIKE11模型预报无资料断面水位[J]. 水利水运工程学报,2023(3):57-67.
[17]李鑫,刘艳丽,朱士江,等. 基于新安江模型和BP神经网络的中小河流洪水模拟研究[J]. 中国农村水利水电,2022(1):93-97.
[18]傅太生,姚允龙,陆益. 长江下游镇江站高潮位预报分析[J]. 江苏水利,2006(8):28-32.
[19]姚思源,李国芳,钱睿智,等. 南水北调东线工程源头长江潮位预报[J]. 南水北调与水利科技,2021,19(6):1136-1146.
[20]王如云,李丹,周钧,等. 感潮河段单站等时距水位非线性优化预报模型[J]. 水道港口,2017,38(2):132-136.

相似文献/References:

[1]白立影,戴凤君,谭 亚,等.镇江站天文潮预报模型研究[J].江苏水利,2017,(10):40.
 BAI Liying,DAI Fengjun,TAN Ya,et al.Study on prediction model of astronomical tide in Zhenjiang Station[J].JIANGSU WATER RESOURCES,2017,(07):40.
[2]杨柳俊,丁宏伟,张云,等.水源地突发性水污染影响与预警站选址[J].江苏水利,2022,(09):54.
 YANG Liujun,DING Hongwei,ZHANG Yun,et al.Impact of sudden water pollution and site selection of early warning station in water source area[J].JIANGSU WATER RESOURCES,2022,(07):54.
[3]赵方玲,张谨,王津,等.基于峰谷电价的感潮河段泵站日优化运行研究[J].江苏水利,2023,(11):21.
 ZHAO Fangling,ZHANG Jin,WANG Jin,et al.Research on daily optimal operation of tidal reach pump station based on peak-valley electricity price[J].JIANGSU WATER RESOURCES,2023,(07):21.
[4]邵勇,夏达忠,周樨旸,等.长江下游感潮河段水闸引排水能力的计算模型应用[J].江苏水利,2024,(08):43.
 SHAO Yong,XIA Dazhong,ZHOU Xiyang,et al.Application of calculation model of diversion and drainage capacity of sluice in tidal reach of lower reaches of Yangtze River: taking the Jiepai Water Control Project of Xinmeng River as an example[J].JIANGSU WATER RESOURCES,2024,(07):43.

备注/Memo

备注/Memo:
收稿日期:2024-04-19
基金项目:江苏省水利科技项目(2020065)
作者简介:季俊杰(1987—),男,工程师,硕士,主要从事水利工程相关工作。E-mail:236978377@qq.com
更新日期/Last Update: 2024-07-15