[1]刘兆正,张合朋,吉庆伟,等.冻融环境下水工混凝土结构碳化时变可靠度分析[J].江苏水利,2021,(06):17-22.
 LIU Zhaozheng,ZHANG Hepeng,JI Qingwei,et al.Time-varying reliability analysis of carbonation of hydraulic concrete structures under freeze-thaw conditions[J].JIANGSU WATER RESOURCES,2021,(06):17-22.
点击复制

冻融环境下水工混凝土结构碳化时变可靠度分析()
分享到:

《江苏水利》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年06期
页码:
17-22
栏目:
水利工程建设
出版日期:
2021-06-23

文章信息/Info

Title:
Time-varying reliability analysis of carbonation of hydraulic concrete structures under freeze-thaw conditions
文章编号:
1007-7839(2021)06-0017-06
作者:
刘兆正1 张合朋1 吉庆伟1 侯利军2 周元斌1
(1.江苏省骆运水利工程管理处, 江苏 宿迁 223800; 2.河海大学 港口海岸与近海工程学院, 江苏 南京 210098)
Author(s):
LIU Zhaozheng1 ZHANG Hepeng1 JI Qingwei1 HOU Lijun2 ZHOU Yuanbin1
(1.Luoyun Hydraulic Project Management Division of Jiangsu Province, Suqian 223800, China; 2.College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China)
关键词:
混凝土冻融碳化碳化模型可靠性
Keywords:
concrete freeze-thaw carbonation carbonation model reliability
分类号:
TU528.01
文献标志码:
A
摘要:
碳化作用是水工混凝土结构最为普遍的耐久性劣化因素。在寒冷地区,混凝土冻融损伤进一步加剧了碳化作用,特别在干湿交替部位更为严重。针对冻融环境下混凝土碳化问题,分析了服役龄期内冻融损伤混凝土的碳化时变可靠水平。结合已有混凝土碳化模型、混凝土冻融损伤模型、实验室与自然环境冻融相关关系等建立了冻融环境下混凝土碳化深度模型,进而结合相关变量的统计模型和数字特征,建立了碳化时变可靠度分析方法。然后,通过参数分析,研究了冻融、碳化残量、环境影响系数和混凝土部位对碳化时变可靠度的影响规律。该研究为寒冷地区水工混凝土结构碳化时变可靠度分析和碳化寿命预测提供参考。
Abstract:
Carbonation is the most common durability deterioration factor for hydraulic concrete structures. In cold regions, concrete freeze-thaw damage has further aggravated the carbonization effect, especially in the alternately wet-dry parts. In view of the carbonation problem of concrete in freeze-thaw environment, time-varying reliability level of carbonation of freeze-thaw damaged concrete during service life was analyzed. Combined with existing concrete carbonation model, concrete freeze-thaw damage model, and freeze-thaw correlation between laboratory and natural environment, a concrete carbonation depth model under freeze-thaw environment was established, and a time-varying reliability analysis method for carbonation was established by combining statistical model and numerical characteristics of related variables. Then, through parameter analysis, effects of freeze-thaw, carbonation residue, environmental influence coefficient and concrete position on time-varying reliability of carbonation were studied, which could provide a reference for time-varying reliability analysis and carbonation life prediction of hydraulic concrete structures in cold regions.

参考文献/References:

[1] 牛获涛. 混凝土结构耐久性与寿命预测[M]. 北京:科学出版社,2003.
[2] 肖佳,勾成福. 混凝土碳化研究综述[J]. 混凝土,2010(1):40-44.
[3] 蒋利学. 混凝土碳化深度的计算模型及实验研究[D]. 上海:同济大学,1996.
[4] 蒋清野. 混凝土碳化数据库与混凝土碳化分析[R]. 攀登计划一钢筋锈蚀与混凝土冻融破坏的预测模型1997年度研究报告,1997.
[5] 余波,成荻,杨绿峰. 混凝土结构的碳化环境作用量化与耐久性分析[J]. 土木工程学报,2015,48(9):51-59.
[6] 罗小勇,邹洪波,施清亮. 不同应力状态下混凝土碳化耐久性试验研究[J]. 自然灾害学报,2012,21(2):194-199.
[7] 肖前慧. 冻融环境多因素耦合作用混凝土结构耐久性研究[D]. 西安:西安建筑科技大学,2010.
[8] 水电部水工混凝土耐久性调查组. 全国水工混凝土建筑物耐久性及病害调查报告[R]. 北京:水利水电科学研究所,1987.
[9] PAPADAKIS V G,VAYENAS C G,FARDIS M N. Physical and chemical characteristics affecting the durability of concrete [J]. ACI Materials Journal,1991,8(2):186-196.
[10] 牛荻涛,李春晖,宋华. 复掺矿物掺合料混凝土碳化深度预测模型[J]. 西安建筑科技大学学报(自然科学版),2010,42(4):464-467.
[11] 李金玉,彭小平,邓正刚,等. 混凝土抗冻性的定量化设计[J]. 混凝土,2000(12):61-65.
[12] 武海荣,金伟良,延永东,等. 混凝土冻融环境区划与抗冻性寿命预测[J]. 浙江大学学报(工学版),2012,46(4):80-87.
[13] 《港口工程结构可靠度设计统一标准》编制组. 港口工程结构可靠度[R]. 北京:人民交通出版社,1992.
[14] 牛荻涛,石玉钗,雷怡生. 混凝土碳化的概率模型及碳化可靠性分析[J]. 西安建筑科技大学学报(自然科学版),1995,27(3):252-256.
[15] 李田,刘西拉. 砼结构的耐久性设计[J]. 土木工程学报,1994,27(2):47-55.

相似文献/References:

[1]杨卫星,汤仲仁.南通市九圩港提水泵站工程裂缝处理施工工艺[J].江苏水利,2017,(04):18.
 YANG Weixing,TANG Zhongren.The construction process of concrete crack treatment in Jiuweigang pump station[J].JIANGSU WATER RESOURCES,2017,(06):18.
[2]沈义勤.人民胜利堰节制闸除险加固工程混凝土防碳化处理方案的选择[J].江苏水利,2018,(02):25.
 SHEN Yiqin.Selection of the concrete anti carbonization treatment scheme for the reinforcement project of the people's victory weir sluice[J].JIANGSU WATER RESOURCES,2018,(06):25.
[3]郭燕飞,高 强,李 轶*.混凝土负载C,N-TiO2 对有机磷杀虫剂的吸附和降解性能研究[J].江苏水利,2018,(02):41.
 GUO Yanfei,GAO Qiang,LI Yi*.Study on adsorption and degradation of organophosphorus pesticides by C and N-TiO2 supported on concrete[J].JIANGSU WATER RESOURCES,2018,(06):41.
[4]王予匀.浅谈省属水利工程维修养护项目中混凝土工程的外观控制[J].江苏水利,2019,(02):67.
 WANG Yuyun.Discussion on appearance control of concrete engineering in maintenance and repair project of provincial water conservancy project[J].JIANGSU WATER RESOURCES,2019,(06):67.
[5]张 明.对某送水渠完建期混凝土护坡衬砌出现上浮的原因剖析[J].江苏水利,2021,(06):23.
 ZHANG Ming.Causes analysis on concrete slope lining floating in completion period of a water supply channel[J].JIANGSU WATER RESOURCES,2021,(06):23.
[6]宋 波,徐正飞,李 军,等.黄窝水库保护利用对策研究[J].江苏水利,2021,(增刊1):41.
 SONG Bo,XU Zhengfei,LI Jun,et al.Study on protection and utilization countermeasures of Huangwo Reservoir[J].JIANGSU WATER RESOURCES,2021,(06):41.
[7]谷静,王霄,陈超,等.渠道护坡混凝土物化损伤作用下力学特性[J].江苏水利,2022,(07):21.
 GU Jing,WANG Xiao,CHEN Chao,et al.Mechanical properties of canal slope protection concrete under physicochemical damage[J].JIANGSU WATER RESOURCES,2022,(06):21.
[8]龚志明,王鹏,周晓锋*.光磁耦合式自愈合混凝土的制备与研究[J].江苏水利,2022,(11):1.
 GONG Zhiming,WANG Peng,ZHOU Xiaofeng*.Preparation and study of optomagnetically coupled self-healing concrete[J].JIANGSU WATER RESOURCES,2022,(06):1.

备注/Memo

备注/Memo:
收稿日期:2020-11-26
基金项目:江苏省水利科技项目(2017025、2020016),水利部公益性行业科研专项(201501036)
作者简介:刘兆正(1962—),男,高级工程师,研究方向为水利工程管理。
更新日期/Last Update: 2021-06-23