[1]张庆宏,施卫东,谢占山,等.不同出水口淹没深度的轴流泵性能及内部湍流特征[J].江苏水利,2021,(09):1-7.
 ZHANG Qinghong,SHI Weidong,XIE Zhanshan,et al.Performance and internal turbulence characteristics of axial flow pump with different outlet submerged depth[J].JIANGSU WATER RESOURCES,2021,(09):1-7.
点击复制

不同出水口淹没深度的轴流泵性能及内部湍流特征()
分享到:

《江苏水利》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年09期
页码:
1-7
栏目:
水利规划与设计
出版日期:
2021-09-27

文章信息/Info

Title:
Performance and internal turbulence characteristics of axial flow pump with different outlet submerged depth
文章编号:
1007-7839(2021)09-0001-07
作者:
张庆宏 施卫东 谢占山 史周浩 谭林伟
(南通大学 机械工程学院, 江苏 南通 226019)
Author(s):
ZHANG Qinghong SHI Weidong XIE Zhanshan SHI Zhouhao TAN Linwei
(School of Mechanical Engineering, Nantong University, Nantong 226019, China)
关键词:
轴流泵 淹没深度 数值仿真
Keywords:
axial flow pump submerged depth numerical simulation
分类号:
TV675
文献标志码:
B
摘要:
为了研究不同出水口淹没深度的轴流泵性能及内部湍流特征,以1600QZB-85轴流泵为研究对象,以CFX为平台,基于标准k-ε湍流模型,开展了0.8 n~1.2 n工况下的轴流泵出水口在不同淹没深度下的数值仿真研究。结果表明:叶轮转速一定,轴流泵的效率和扬程随着出水口淹没深度的增加呈现先增大后减小的特征; 转轮区的湍动能损耗随着出水口淹没深度的增加,其湍动能损耗呈现小幅变化,呈现先减小后增大趋势,且湍动能损耗在叶轮区呈现非对称分布; 在出水口淹没深度为5 m时,轴流泵内部流场最好,偏离最佳淹没深度越多,内部流场越紊乱。出水口淹没深度相同,在额定叶轮转速的工况下,轴流泵的效率最高。上述研究结果对于深入研究转轮区压力与内部湍流特征、提高轴流泵泵站运行效率等具有一定的意义。
Abstract:
In order to study performance and internal turbulence characteristics of axial flow pumps with different submerged depths of outlets, the 1600QZB-85 axial flow pump was taken as a research object, and CFX was used as the platform. Based on the standard κ-ε turbulence model, the numerical simulation research of axial flow pump outlets under 0.8 n -1.2 n working conditions under different submerged depths was carried out. The results showed that the efficiency and head of the axial flow pump increased first and then decreased with the increase of submerged depth of outlet when the impeller speed was constant. The turbulent kinetic energy loss in the runner region presented a small change with the increase of submerged depth of outlet, which decreased first and then increased, and the turbulent kinetic energy loss presented an asymmetric distribution in the impeller region. When the submerged depth of outlet was 5 m, the internal flow field of the axial flow pump was the best, and the more the deviation from the optimal submerged depth, the more disordered the internal flow field was. The efficiency of axial flow pump was the highest under the condition of rated impeller speed with the same submerged depth of outlet. The above research results had a certain significance for the in-depth study of the pressure and internal turbulence characteristics of the runner region and the improvement of the operation efficiency of the axial flow pump station.

参考文献/References:

[1] 关醒凡. 现代泵技术手册[M]. 北京:宇航出版社,1995.
[2] 王福军,张玲,张志民. 轴流泵不稳定流场的压力脉动特性研究[J]. 水利学报,2007(8):1003-1009.
[3] 黄继汤. 空化与空蚀的原理及应用[M]. 北京:清华大学出版社,1991.
[4] XIE Z,SHI W,TIAN Q,et al.Fatigue Life Assessment and Damage Investigation of Centrifugal Pump Runner[J]. Engineering Failure Analysis,2021,124(1):105256.
[5] 施卫东,李林建,许荣军,等. 叶片开缝对单叶片泵径向力的影响[J]. 排灌机械工程学报,2020,38(09):865-870,890.
[6] 谭林伟,施卫东,张德胜,等. 叶片出口安放角对单叶片泵性能的影响[J]. 排灌机械工程学报,2017,35(10):835-841,855.
[7] 李伟,季磊磊,施卫东,等. 不同流量工况下混流泵压力脉动试验[J]. 农业机械学报,2016,47(12):70-76.
[8] 孙壮壮,张友明,夏鹤鹏,等. 不同工况下轴流泵转子径向力及其压力脉动分析[J]. 灌溉排水学报,2019,38(1):122-128.
[9] 施卫东,季磊磊,李伟,等. 不同流量工况下斜流泵内部流场PIV试验[J]. 农业机械学报,2016,47(6):27-33.
[10] 张硕,陈长盛. 运行参数与轴流泵流体激励力的关系[J]. 噪声与振动控制,2014,34(4):134-136,152.
[11] 谭林伟,牛国平,施卫东,等. 不同转速下离心泵压力脉动的试验研究[J]. 南通大学学报(自然科学版),2020,19(2):56-63.
[12] 吴晨晖,汤方平,杨帆,等. 空化对轴流泵叶轮能量转化特性的影响[J]. 水利水电科技进展,2019,39(4):49-55,74.
[13] XIE Z,SHI W.Simulation investigation on impact damage characteristics of metal plate by cavitating bubble micro-jet water hammer[J]. Engineering Failure,2020(115):104626.
[14] 初长虹,刘超,孙玉民,等. 泵站进水口淹没深度对漩涡的影响[J]. 南水北调与水利科技,2019,17(6):178-186.
[15] 何耘,刘成. 水泵吸水口临界淹没深度及其近场水力特性试验研究[J]. 西安理工大学学报,2010,26(1):92-96.
[16] 杜敏,高学平. 进水口最小淹没水深和消涡措施[J]. 辽宁工程技术大学学报,2007(增刊2):237-239.

相似文献/References:

[1]孙丹丹,高 慧,王 刚,等.立式轴流泵装置进出水流道多方案优选[J].江苏水利,2018,(11):35.
 SUN Dandan,GAO Hui,WANG Gang,et al.Multiple schemes optimization for inlet and outlet flow of vertical axial flow pump device[J].JIANGSU WATER RESOURCES,2018,(09):35.
[2]李太民,王业宇,吉庆伟,等.大型立式轴流泵变频反向发电压力脉动特性分析[J].江苏水利,2019,(07):69.
 LI Taimin,WANG Yeyu,JI Qingwei,et al.Analysis on the pressure pulsation characteristics of large-scale vertical axial flow pump with rotation frequency inverted power generation[J].JIANGSU WATER RESOURCES,2019,(09):69.
[3]朱晓明,张东培,周 斌,等.大型立式轴流泵进水流道两点压差式测流法研究[J].江苏水利,2019,(10):23.
 ZHU Xiaoming,ZHANG Dongpei,ZHOU Bin,et al.Study on the two-point differential pressure type flow measurement method for inlet flow channel of large vertical axial flow pum[J].JIANGSU WATER RESOURCES,2019,(09):23.
[4]李松柏,孙涛,成立,等.大型立式轴流泵站典型故障调查分析[J].江苏水利,2022,(03):36.
 LI Songbai,SUN Tao,CHENG Li*,et al.Investigation and analysis on typical faults in large vertical axial flow pumping station[J].JIANGSU WATER RESOURCES,2022,(09):36.
[5]王丽,施伟,刘连建,等.导叶角度对轴流泵高效区运行范围的影响[J].江苏水利,2023,(05):17.
 WANG Li,SHI Wei,LIU Lianjian,et al.Influence of the angle of the guide vane on the operating range of the high efficiency zone of the axial flow pump[J].JIANGSU WATER RESOURCES,2023,(09):17.

备注/Memo

备注/Memo:
收稿日期:2021-03-22
基金项目:江苏省水利科技项目(2019038); 国家自然科学基金项目资助(No.51579118)
作者简介:张庆宏(1995—),男,硕士研究生,研究方向为流体机械。E-mail:473861316@qq.com
通信作者:施卫东(1964—),男,研究员,博士生导师,研究方向为流体机械。E-mail:Shiwd@ntu.edu.cn
更新日期/Last Update: 2021-09-27