[1]李运奔,张建华,殷 鹏,等.疏浚底泥脱水固结处理后氮磷营养盐释放特征研究[J].江苏水利,2020,(12):9-16.
 LI Yunben,ZHANG Jianhua,YIN Peng,et al.Study on the release characteristics of nitrogen and phosphorus nutrients from dredging sediment after dewatering and consolidation treatment[J].JIANGSU WATER RESOURCES,2020,(12):9-16.
点击复制

疏浚底泥脱水固结处理后氮磷营养盐释放特征研究()
分享到:

《江苏水利》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年12期
页码:
9-16
栏目:
水生态与环境
出版日期:
2020-12-28

文章信息/Info

Title:
Study on the release characteristics of nitrogen and phosphorus nutrients from dredging sediment after dewatering and consolidation treatment
文章编号:
1007-7839(2020)12-0009-08
作者:
李运奔1 张建华2 殷 鹏2 范成新1 申秋实1 3*
1.中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 江苏 南京 210008; 2.江苏省水资源服务中心, 江苏 南京 210029; 3.中国科学院中非联合研究中心, 湖北 武汉 430074
Author(s):
LI Yunben1 ZHANG Jianhua2 YIN Peng2 FAN Chengxin1 SHEN Qiushi13*
1.Key Laboratory of Lakes and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; 2.Jiangsu Water Resources Service Center, Nanjing 210029, China; 3.Sino-Africa Joint Research Center,Chinese Academy of Sciences, Wuhan 430074, China
关键词:
疏浚 底泥 固结 氮磷营养盐 太湖
Keywords:
dredging sediment solidification nitrogen and phosphorus nutrients Taihu Lake
分类号:
X524
文献标志码:
B
摘要:
以太湖西沿岸区、梅梁湾、东太湖底泥为对象,采用室内模拟的方法,在静态和动力扰动2种不同情景下,研究了疏浚底泥脱水固结处理后内源氮磷营养盐释放特征。结果表明:各研究区域底泥氮磷营养盐释放能力较强,TN、TP释放速率分别在7.26~29.65 mg/(m2·d)和-0.37~1.42 mg/(m2·d)之间。脱水固结处理后,疏浚底泥内源TN、TP释放能力明显降低,其TN、TP静态释放速率分别释放为3.36~22.98 mg/(m2·d)和-0.37~-0.07 mg/(m2·d),底泥内源氮磷释放能力尤其是TP释放能力明显减小。在动力扰动的情况下,脱水固结处理清淤污泥TN释放速率为6.31~30.96 mg/(m2·d),较原状底泥降低85%以上,TP释放速率为-0.23~0.37 mg/(m2·d),较原状底泥降低98%以上。脱水固结处理后底泥含水率、孔隙度均大幅减小,抗扰动能力增强,内源氮磷营养盐释放能力减弱,内源氮磷二次污染风险明显降低。
Abstract:
Taking the sediments of west coast of Taihu Lake, Meiliang Bay and East Taihu Lake as research objects, the release characteristics of endogenous nitrogen and phosphorus nutrients from dredged sediments after dewatering and consolidation were studied by using the method of indoor simulation under two different scenarios of static and dynamic disturbance. The results showed that the release capacity of nitrogen and phosphorus nutrients from sediments in each study area was strong, and the release rates of TN and TP ranged 7.26~29.65 mg/(m2·d)and -0.37~1.42 mg/(m2·d), respectively. After dewatering and consolidation treatment, the release capacity of endogenous TN and TP of dredged sediments was significantly reduced, and the static release rates of TN and TP were 3.36~22.98 mg/(m2·d), -0.37~-0.07 mg/(m2 d). The release capacity of endogenous nitrogen and phosphorus in sediments, especially the release intensity of TP, was significantly reduced. With the dynamic disturbance, the release rates of TN and TP of the dredged sediments after dehydrated solidification treatment were 6.31~30.96 mg/(m2·d)and -0.23~0.37 mg/(m2·d). Compared with the dynamic release rates of the in-situ sediments, the dynamic release rates of TN and TP of the dredged sediments after dehydrated solidification treatment reduced more than 85% and 96%, respectively. After the dehydrated solidification treatment, the moisture content, porosity, fluidity and resuspension ability of the dredged sediments were reduced and the release ability of TN and TP decreased significantly, which weakened the risk of secondary pollution from sediment internal nutrients release largely.

参考文献/References:

[1] 范成新, 张路, 秦伯强, 等. 太湖沉积物-水界面生源要素迁移机制及定量化——1.铵态氮释放速率的空间差异及源-汇通量[J]. 湖泊科学, 2004, 16(1):10-20.
[2] 范成新, 张路, 包先明, 等. 太湖沉积物-水界面生源要素迁移机制及定量化——2.磷释放的热力学机制及源-汇转换[J]. 湖泊科学, 2006, 18(3):207-217.
[3] 陈荷生. 太湖底泥的生态疏浚工程[J]. 水利水电科技进展2004, 24(6):34-37, 54.
[4] CRONBERG G. Changes in the phytoplankton of Lake Trummen induced by restoration[J]. Hydrobiologia, 1982, 86(1/2):185-193.
[5] MURAKAMI, KEN. Dredging for controlling eutrophication of lake Kasumigaura, Japan[J]. Lake and Reservoir Management, 1984, 1(1):592-598.
[6] 刘伟, 徐南妮. 巢湖清淤合肥项目区域污染底泥调查研究[J]. 环境导报, 2000(2):30-31.
[7] 吴芝瑛, 虞左明, 盛海燕, 等. 杭州西湖底泥疏浚工程的生态效应[J]. 湖泊科学, 2008(3):17-24.
[8] 原居林, 沈锦玉, 尹文林, 等. 应用浮游植物群落结构及富营养化指数评价南太湖底泥疏浚效果[J]. 水生态学杂志, 2010(1):16-19.
[9] 刘禹杨, 吴燕, 胡保安, 等. 疏浚底泥掺外加剂真空预压脱水技术研究[J]. 水利水运工程学报, 2013(3):78-82.
[10] 于洋, 孟本文, 彭建锋, 等. 东湖风景区湖底淤泥脱水固结一体化施工工艺[J]. 施工技术, 2014(19):98-100.
[11] 彭秀达, 陈玉荣. 城市黑臭水体清淤疏浚及底泥处理处置技术探讨[C]∥第四届中国水生态大会论文集. 海宁:国际水生态安全中国委员会, 2016:181-192.
[12] CERMELJ B, BERTUZZI A, FAGANELI J. Modelling of Pore Water Nutrient Distribution and Benthic Fluxes in Shallow Coastal Waters(Gulf of Trieste, Northern Adriatic)[J]. Water Air & Soil Pollution, 1997(99):435-444.
[13] 王圣瑞. 沉积物-水界面过程[M], 北京:科学出版社, 2013.
[14] 金相灿, 屠清瑛. 湖泊富营养化调查规范[M], 北京:中国环境出版社, 1990.
[15] CIENIAWSKI S, MACDONALD D D, Ingersoll C G. EPA-905-B02-001-A, A guidance manual to support the assessment of contaminated sediments in freshwater ecosystems[S]. Chicago, Illinois, United States:Great Lakes National Program Office, 2002.

相似文献/References:

[1]成小飞,曾春华,李言亮,等.湖区旅游航道疏浚工程设计分析[J].江苏水利,2017,(10):5.
 CHENG Xiaofei,ZENG Chunhua,LI Yanliang,et al.Design and analysis on dredging project of tourist channel in lake district[J].JIANGSU WATER RESOURCES,2017,(12):5.
[2]耿晓明,秦亮,王曦鹏,等.河道底泥性质对絮凝剂脱水固结效果分析研究[J].江苏水利,2024,(10):66.
 GENG Xiaoming,QIN Liang,WANG Xipeng,et al.Analysis and study on the dehydration and consolidation effect of flocculant on the properties of river sediment[J].JIANGSU WATER RESOURCES,2024,(12):66.

备注/Memo

备注/Memo:
收稿日期:2020-04-17
基金项目:江苏省水利科技项目(2018004); 国家自然科学基金项目(41877488); 中国科学院海外科教基地建设项目(SAJC201609)
作者简介:李运奔(1994—),男,硕士研究生,研究方向为河湖水底泥污染。E-mail: 1440221009@qq.com
通信作者:申秋实(1982—),男,博士,助理研究员,主要从事湖泊水环境生源要素地球化学循环及湖泊沉积物污染过程与修复方面研究工作。E-mail: qsshen@niglas.ac.cn
更新日期/Last Update: 2020-12-20