[1]宋瑞平,王冬梅,刘文壮.基于网络核密度估计的河湖人类活动热点区域识别[J].江苏水利,2022,(02):65-68.
 SONG Ruiping,WANG Dongmei,LIU Wenzhuang.Hotspots identification of human activities in rivers and lakes based on network kernel density estimation[J].JIANGSU WATER RESOURCES,2022,(02):65-68.
点击复制

基于网络核密度估计的河湖人类活动热点区域识别()
分享到:

《江苏水利》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2022年02期
页码:
65-68
栏目:
水利信息化
出版日期:
2022-02-20

文章信息/Info

Title:
Hotspots identification of human activities in rivers and lakes based on network kernel density estimation
文章编号:
1007-7839(2022)02-0065-04
作者:
宋瑞平 王冬梅 刘文壮
(江苏省水利科学研究院, 江苏 南京 210017)
Author(s):
SONG Ruiping WANG Dongmei LIU Wenzhuang
(Jiangsu Hydraulic Research Institute, Nanjing 210017, China)
关键词:
平面核密度估计 网络核密度估计 遥感监测 里下河腹部地区 湖泊湖荡
Keywords:
plane kernel density estimation network kernel density estimation remote sensing monitoring belly area of Lixia River lake
分类号:
X832
文献标志码:
B
摘要:
以里下河中部地区湖泊群为研究范围,选择研究区内2017—2020年间由遥感监测发现的人类活动变化点数据,基于网络核密度估计的方法识别研究区内人类活动现象的高发区域、高发河段。结果表明,变化点的分布与变化点的类型、周边养殖业发展程度、土地类型有关。此外,网络核密度估计方法在应用于河网内部热点识别时,其结果比平面核密度估计更符合实际情况。
Abstract:
In this study, the lakes in the middle part of the Lixiahe River were selected as the research area, and the data of human activity change points detected by remote sensing monitoring during 2017 and 2020 were selected in the study area. Based on the network kernel density estimation method, the areas and river sections with high incidence of human activity phenomena in the study area were identified. The results showed that the distribution of change point was related to the type of change point, the development degree of surrounding aquaculture and land type. In addition, when the network kernel density estimation method is applied to the hot spot identification in river network, the results are more consistent with the actual situation than the plane kernel density estimation.

参考文献/References:

[1] OKABE A. Spatial analysis along networks: statistical and computational methods[M]. New Jersey:John Wiley & Sons, 2012.
[2] KHALID S, SHOAIB F, QIAN T.Network constrained spatio-temporal hotspot mapping of crimes in faisalabad[J]. Applied Spatial Analysis and Policy, 2018(11):599-622.
[3] XIE Z, YAN J.Detecting traffic accident clusters with network kernel density estimation and local spatial statistics: an integrated approach[J]. Journal of Transport Geography, 2013, 31(7):64-71.
[4] 钱天陆, 苑振宇, 倪建华, 等. 基于平面与网络核密度估计的南京市主城区ATM机分布热点探测[J]. 科技通报, 2018, 34(1): 105-110.
[5] 龙雪琴, 周萌, 赵欢, 等. 基于网络核密度的网约车上下客热点识别[J]. 交通运输系统工程与信息, 2021, 21(3): 86-100.

备注/Memo

备注/Memo:
收稿日期:2021-10-20
作者简介:宋瑞平(1997—),男,本科,研究方向为水利信息化、水利空间数据分析。E-mail:484209521@qq.com
更新日期/Last Update: 2022-02-26