[1]刘飞诗,胡腾腾*,何晓静,等.基于人工智能的农田水利自动化监测系统[J].江苏水利,2022,(11):46-49,65.
 LIU Feishi,HU Tengteng,HE Xiaojing,et al.Research on automatic monitoring system of farmland water conservancy based on artificial intelligence[J].JIANGSU WATER RESOURCES,2022,(11):46-49,65.
点击复制

基于人工智能的农田水利自动化监测系统()
分享到:

《江苏水利》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2022年11期
页码:
46-49,65
栏目:
水利信息化
出版日期:
2022-11-25

文章信息/Info

Title:
Research on automatic monitoring system of farmland water conservancy based on artificial intelligence
文章编号:
1007-7839(2022)11-0046-0004
作者:
刘飞诗1胡腾腾2*何晓静3付梁其4潘磊5
(1.江苏远瀚建筑设计有限公司,江苏 常州213000;2.常州市金坛区水利建设管理所,江苏 常州213200;3.江苏省水文水资源勘测局常州分局,江苏 常州213100;4.江苏先行建设有限公司,江苏 常州213100;5.常州市金坛区水利规划服务中心,江苏 常州213200)
Author(s):
LIU Feishi1 HU Tengteng2 HE Xiaojing3 FU Liangqi4 PAN Lei5
(1.Jiangsu Yuanhan Architectural Design Co., Ltd., Changzhou 213000, China; 2.Changzhou Jintan District Water Conservancy Construction Management Office, Changzhou 213200, China; 3.Changzhou Branch of Jiangsu Province Hydrology and Water Resources Investigation Bureau, Changzhou 213100, China; 4.Jiangsu Xianxian Construction Co., Ltd., Changzhou 213100, China; 5.Changzhou Jintan District Water Resources Planning Service Center, Changzhou 213200, China)
关键词:
人工智能农田水利自动化机器学习算法
Keywords:
artificial intelligence farmland water conservancy automation machine learning algorithm
分类号:
TV93
文献标志码:
B
摘要:
阐述了人工智能在利用无线传感器网络(WSN)技术采集数据和实现农田水利自动化监测方面的潜力。无线传感器网络应用包括数据的采集、统计和分析,可用于监测农业及其自动化活动过程;农田水利自动化监测包含了温度、湿度、大气压力、水或土壤pH值等传感器的布设。通过各种机器学习算法(人工神经网络)的测试,研究发现广义回归神经网络(GRNN)是最适合农田水利自动化监测的。
Abstract:
This paper expounds the potential of artificial intelligence in using wireless sensor network (WSN) technology to collect data and realize automatic monitoring of farmland water conservancy. The application of wireless sensor network includes data collection, statistics and analysis, which can be used to monitor the process of agriculture and its automation activities. Automatic monitoring of farmland water conservancy includes the deployment of sensors such as temperature, humidity, atmospheric pressure, water or soil PH value. Through the tests of various machine learning algorithms (artificial neural networks), the study found that generalized regression neural network (GRNN) is the most suitable for automatic monitoring of farmland water conservancy.

参考文献/References:

[1]王学渊,赵连阁. 中国农业用水效率及影响因素[J]. 农业经济问题,2008(3):10-17.
[2]梁美社. 基于虚拟水土资源贸易的区域农业结构优化研究[D]. 杨凌:西北农林科技大学,2011.
[3] SETHURAMALINGAM T K,NAGARAJ B. A proposed system of ship trajectory control using particle swarmoptimization[J]. Procedia Computer Science,2016(87):294-299.
[4]赵欣. 智能机器人在农业自动化领域的主要应用[J]. 中国农学通报,2010(26):360-364.
[5]FEI X,SHAH N,VERBA N,et al. CPS data streams analytics based on machine learning for cloud and fogcomputing:a survey[J]. Future Gener. Comput. Syst,2019(90):435-450.
[6]ARUNKUMAR R,BALAKRISHNAN N. Medical image classification for disease diagnosis by DBN methods[J]. Pak J Biotechnol,2018(15):107-110.
[7]IVANOV S,BHARGAVA K,DONNELLY W. Precision farming:sensor analytics[J]. IEEE IntellSyst,2015,30(4):76-80.
[8]AGRAWAL H,DHALL R,IYER K S S,et al. Animproved energy efficient system for IoT enabled precision agriculture[J]. Journal of Ambient Intelligence and Humanized Computing,2020,12(6):2337-2348.
[9]KHAN T F,KUMAR D S. Ambient crop field monitoring for improving context based agricultural by mobile sink inWSN[J]. Journal of Ambient Intelligence and Humanized Computing,2019,11(4):1431-1439.
[10]王韶,杨江平,李逢兵,等. 基于经验模式分解和神经网络的短期风速组合预测[J]. 电力系统保护与控制,2012,40(10):6-11,18.
[11]RAJENDRAN A,BALAKRISHNAN N,VARATHARAJ M. Malleable fuzzy local median c means algorithm for effective biomedical image segmentation[J]. Sensing and Imaging,2016,17(1):24.
[12]周和平,张明义,周琪,等. 新疆地区农业灌溉水利用系数分析[J]. 农业工程学报,2013,29(22):100-107.
[13]彭世彰,高晓丽. 提高灌溉水利用系数的探讨[J]. 中国水利,2012(1):33-35.
[14]NAGARAJ B,MUTHUSAMI P,MURUGANANTH N. Optimum PID controller tuning using soft computing methodologies for industrial process[J]. Computer Science,2014(4):1761.
[15]LI G,PENG S,WANG C,et al. An energy-efficient data collection scheme using denoising autoencoder in wireless sensor networks[J]. 清华大学学报自然科学版(英文版),2019,24(1):86-96.

相似文献/References:

[1]方卫华,杨浩东,郑福寿.水工程数字孪生体系架构研究[J].江苏水利,2023,(12):34.
 FANG Weihua,YANG Haodong,ZHENG Fushou.Research on digital twin system architecture of water engineering[J].JIANGSU WATER RESOURCES,2023,(11):34.

备注/Memo

备注/Memo:
收稿日期:2022-05-26
基金项目:水利部水科学与水工程重点实验室开放研究基金项目(YK914012)
作者简介:刘飞诗(1991—),男,工程师,硕士,主要从事农田水利自动化研究。E-mail:512267916@qq.com
通信作者:胡腾腾(1990—),女,工程师,硕士,主要从事节水灌溉研究。E-mail:751839457@qq.com
更新日期/Last Update: 2022-11-25