[1]左亚会,徐敏月,韩 阳.基于改进RBF网络模型的中长期水文预报[J].江苏水利,2017,(02):9-11,16.
 ZUO Yahui,XU Minyue,HAN Yang.Mid and long term hydrological forecast based on improved RBF n etwork model[J].JIANGSU WATER RESOURCES,2017,(02):9-11,16.
点击复制

基于改进RBF网络模型的中长期水文预报()
分享到:

《江苏水利》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年02期
页码:
9-11,16
栏目:
水文水资源
出版日期:
2017-02-15

文章信息/Info

Title:
Mid and long term hydrological forecast based on improved RBF n etwork model
文章编号:
1007-7839(2017)02-0009-03
作者:
左亚会徐敏月韩 阳
江苏省灌溉总渠管理处,江苏 淮安 223200
Author(s):
ZUO YahuiXU MinyueHAN Yang
Main Irrigation Channel Management Division of Jiangsu Province,Huaian 223200,Jiangsu
关键词:
水文预报灰色关联度RBF 网络模型
Keywords:
hydrological forecastgrey relational degreeRBF network model
分类号:
[TV124]
文献标志码:
B
摘要:
针对历史径流资料中各预报因子及预报年份关联度,在分析预报年份非汛期中各月份径流量预报因子基础上,进行较大关联度代表年份筛选。同时,基于Matlab 软件构建融合灰色关联度的RBF 网络预报模型,探索预报目标年汛期径流量,采用改进RBF 网络模型实施汛期径流总量预报具有较强适用性与准确度。
Abstract:
Concerning about the correlation between forecast factor and forecast year of historical runoff data,on the basis of analyzing runoff forecast factors of each month during non-flood season,larger correlation representative years have been filtrated.In addition,RBF network model integrating grey relational degree has been established based on Matlab software.Runoff forecasting method of target year during flood season has been explored.The improved RBF network model has strong applicability and accuracy in runoff volume forecasting during flood season.

参考文献/References:

[1]路剑飞,陈子燊,王扬圣.基于MI-ANFIS 的中长期水文预报方案优选研究[J].水力发电学报,2013(2):48-53.
[2]钱睿智,顾春锋,王永东.扬州市城市防洪排涝水文应急监测[J].江苏水利,2016(1):40-41+44.
[3]李阳,纪昌明,李克飞,张验科,赵璧奎.结合均生函数的神经网络在中长期水文预报中的应用[J].水电能源科学,2013(2):19-22.
[4]许志强,邓玉华.概念性水文模型初探[J].江苏水利,2014(11):36-37+40.
[5]严其飞,李俊山,张仲敏,周伟.一种基于灰色关联度与BP 神经网络的备件需求预测模型[J].物流技术,2014(3):90-92+104.
[6]高明鸣,张艳霞,陆明春.江苏省治涝水文计算方法探析[J].江苏水利,2015(6):27-29+32.
[7]于涛,黄涛,潘膺希,杨林海,王龙.基于BP 神经网络和灰色关联度组合模型的城市生活垃圾清运量预测[J].安全与环境学报,2013(4):94-97.
[8]姜建波,梁军,吴昊,霍中迁.中小河流水文测流选配方案分析[J].江苏水利,2015(10):33-34+37.

相似文献/References:

[1]何健,余宇峰,冯胜男,等.智能水文预报模型的研究与应用[J].江苏水利,2023,(10):1.
 HE Jian,YU Yufeng,FENG Shengnan,et al.Research and application of intelligent hydrological forecasting model[J].JIANGSU WATER RESOURCES,2023,(02):1.

备注/Memo

备注/Memo:
作者简介:左亚会(1990-),男,本科,助理工程师,主要从事水文水资源及水利工程管理工作。
更新日期/Last Update: 2017-02-15