[1]黄炜,王丽,王聪聪.非接触式河流流量监测技术研究[J].江苏水利,2022,(09):19-22.
 HUANG Wei,WANG Li,WANG Congcong.Research on non-contact river flow monitoring technologies[J].JIANGSU WATER RESOURCES,2022,(09):19-22.
点击复制

非接触式河流流量监测技术研究()
分享到:

《江苏水利》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2022年09期
页码:
19-22
栏目:
水文水资源
出版日期:
2022-10-08

文章信息/Info

Title:
Research on non-contact river flow monitoring technologies
文章编号:
1007-7839(2022)09-0019-0004
作者:
黄炜王丽王聪聪
(江苏省水文水资源勘测局,江苏 南京 210013)
Author(s):
HUANG Wei WANG Li WANG Congcong
(Jiangsu Province Hydrology and Water Resources Investigation Bureau, Nanjing 210013, China)
关键词:
测流技术非接触式流量测流水文测验
Keywords:
flow measuring technology non-contact type flow measurement hydrologic test
分类号:
TV123
文献标志码:
B
摘要:
非接触式流量测验技术在现代水文测验中具有时效性强、测量量程大、安全性高等天然优势。通过梳理视频图像测流、电磁波测流、卫星测流等非接触式流量监测技术研究,总结分析了各种监测技术方法的优、劣势和适用条件。研究认为非接触式测流技术将在水文测验领域发挥越来越多的作用,同时也指出其存在表面流速换算误差、受外界环境影响较大等局限性,需要在实际应用中逐步优化。
Abstract:
The non-contact flow measuring technology has the natural advantages of strong timeliness, large measurement range and high safety in modern hydrological measurement. By combing the research progress of non-contact flow monitoring technologies such as video image flow measurement, electromagnetic wave flow measurement and satellite flow measurement, the advantages, disadvantages and applicable conditions of various monitoring technologies are summarized and analyzed. It is considered that the non-contact flow measuring technology will play an increasingly important role in the field of hydrometry. At the same time, it is pointed out that it has some limitations, such as the conversion error of surface velocity, and is greatly affected by the external environment, which need to be gradually optimized and solved in practical application.

参考文献/References:

[1]吴志勇,徐梁,唐运忆,等. 水文站流量在线监测方法研究进展[J]. 水资源保护,2020,36(4):1-7.
[2]徐立中,张振,严锡君,等. 非接触式明渠水流监测技术的发展现状[J]. 水利信息化,2013(3):37-44.
[3]林思夏,曾仲毅,朱云通,等. 侧扫雷达测流系统开发与应用[J]. 水利信息化,2019(1):31-36.
[4]唐洪武,黄淑君,袁赛瑜,等. 长江-鄱阳湖交汇处三维水流结构研究[J]. 河海大学学报(自然科学版),2020,48(2):128-135.
[5]丁昌言,徐明,司存友. 泾河水文站HADCP流量关系率定校正及应用[J]. 人民长江,2009(16):22-24.
[6]韩友平,黄双喜,魏进春. ADCP在长江内河流量比测试验与精度研究[J]. 水利水文自动化,2005(3):5-16.
[7]王慧斌,董伟,张振,等. 基于时空图像频谱的时均流场 重建方法[J]. 仪器仪表学报,2015,36(3):623-631.
[8]王子臣. 几种水文测验新方法综述[J]. 水利水文自动化,1996(2):11-22.
[9]AYA S. Refinement of LSPIV Technique for MonitoringRiver Surface Flows[Z]. 2000.
[10]高东阳,赵西安,潘昕. 基于稀疏快速傅里叶的互相关图像配准[J]. 北京建筑大学学报,2017,33(2):25-28.
[11]DRAMAIS G. Application and evaluation of LS-PIV tech-nique for the monitoring of river surface velocities in highflow conditions[J]. Flow Measurement and Instrumentation,2008(2):117-127.
[12]MOSTAGHIMI S. Stream Discharge Measurement Using A Large-Scale Particle Image Velocimetry Prototype[J]. 2004.
[13]杨圭. 基于CNN与图像处理的河道测流研究[D]. 济南:山东大学,2021.
[14]冯全,张彦洪,赵晓刚. 基于机器视觉的河水表面流速估计[J]. 农业工程学报,2018,34(19):140-146.
[15]张振,徐立中,王慧斌. 河流水面成像测速中的水流示踪物综述[J]. 水利水电科技进展,2014,34(3):81-88.
[16]杨聃,邵广俊,胡伟飞,等. 基于图像的河流表面测速研究综述[J]. 浙江大学学报(工学版),2021,55(9):1752- 1763.
[17]张振,王慧斌,严锡君,等. 时空图像测速法的敏感性分析及不确定度评估[J]. 仪器仪表学报,2017,38(7):1763-1771.
[18]王子臣. 几何测速仪的研究及应用[J]. 水利水文自动化,2002(3):12-15.
[19]KUNITA Y. Application of aerial LSPIV to the 2002 flood of the Yodo River using a helicopter mounted high density video camera[J]. Journal of Hydro-environment Research,2011(4):323-331.
[20]PREUSS I. Estimation of discharge from braided glacial rivers using ERS 1 synthetic aperture radar:first results [J]. Water Resources Research,1995(5):1325-1329.
[21]BECHLE A J,WU C H,LIU W C,et al. Development and application of an automated river-estuary discharge imaging system[J]. Joural of Hydraulic Engineering,2012,138(4):
327-339.
[22]白伟华,夏俊明,万玮,等. 中国GNSS-R机载实验综合评估:河流遥感[J]. 科学通报,2015,60(24):2356.

备注/Memo

备注/Memo:
收稿日期:2022-03-30
基金项目:江苏省水利科技项目(2020059)
作者简介:黄炜(1981—),男,高级工程师,博士,主要从事水文测验及站网管理工作。E-mail:664054945@qq.com
更新日期/Last Update: 2022-09-25