参考文献/References:
[1]张建云. 中国水文预报技术发展的回顾与思考[J]. 水科学进展,2010,21(4):435-443.
[2]刘志雨,刘玉环,孔祥意. 中小河流洪水预报预警问题与对策及关键技术应用[J]. 河海大学学报(自然科学版),2021,49(1):1-6.
[3]张旭旻,瞿思敏,李倩,等. 基于协整理论的淮河流域上游洪水预报实时校正方法[J]. 水资源保护,2022,38(6):88-95,145.
[4]MOSAVI A,OZTURK P,CHAU K W. Flood prediction using machine learning models: literature review[J]. Water 2018(10),1536:1-40.
[5]SUN A Y,SCANLON B R. How can big data and machine learning benefit environment and water management:Asurvey of methods,applications,and future directions[J]. Environmental Research Letters,2019(1):48.
[6]SCHMIDT L,HEE F,ATTINGER S,et al. Challenges in applying machine learning models for hydrological inference:a case study for flooding events across Germany[J]. Water Resources Research,2020,56(5):1-10.
[7]芮孝芳. 水文学与“大数据”[J].水利水电科技进展,2016,36(3):1-4.
[8]张珂,牛杰帆,李曦,等. 洪水预报智能模型在中国半干 旱半湿润区的应用对比[J]. 水资源保护,2021,37(1):28-35.
[9]GHORBANI M A,ZADEH H A,ISAZADEH M,et al. A comparative study of artificial neural network (MLP,RBF) and support vector machine models for river flow prediction[J]. Environmental Earth Sciences,2016,75(6):476.
[10]冯钧,潘飞. 一种LSTM-BP多模型组合水文预报方法[J]. 计算机与现代化,2018(7):82-85.
[11]ZHANG D,LIN J,PENG Q,et al. Modelling and simulating of reservoir operation using the artificial neural network, support vector regression,deep learning algorithm[J]. Journal of Hydrology,2018,56(5):720-736.
[12]马凯凯,李士进,王继民,等. 数据驱动的中小河流智能洪水预报方法对比研究[J]. 中国科学技术大学学报,2016,46(9):774-779.
[13]Hochreiter,Sepp,Schmidhuber,et al. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780.
[14]CUI Z,ZHOU Y,GUO S,et al. A novel hybrid XAJ-LSTM model for multi-step-ahead flood forecasting [J]. Hydrology Research,2021(3):1436-1454.
[15]周研来,郭生练,张斐章,等. 人工智能在水文预报中的应用研究[J]. 水资源研究,2019,8(1):1-12.
[16]DING Y,ZHU Y,FENG J,et al. Interpretable spatio-temporal attention LSTM model for flood forecasting[J]. Neurocomputing,2020,40(3):348-359.
[17]LI K,WAN D,ZHU Y,et al. The applicability of ASCS-LSTM-ATT model for water level prediction in small-andmedium-sized basins in China[J]. Journal of Hydroin- formatics,2020,22(6):1693-1717.
相似文献/References:
[1]左亚会,徐敏月,韩 阳.基于改进RBF网络模型的中长期水文预报[J].江苏水利,2017,(02):9.
ZUO Yahui,XU Minyue,HAN Yang.Mid and long term hydrological forecast based on improved RBF n etwork model[J].JIANGSU WATER RESOURCES,2017,(10):9.